Helvar

SLL Masterclass 2013-2014

is for Lighting Control

© Helvar / Dan Wills

L is for Lighting Control **Agenda**

- The importance of lighting controls in the built environment
- Controlling LED and its benefits
- Part L and how lighting controls can help
- Integrating lighting control to optimise energy performance

Fundamental component in our buildings

- Safety
- Comfort
- Productivity
- Health & Wellbeing

Uncontrolled lighting results in substantial energy waste

• Simplified graph showing the potential energy savings that can be achieved when presence / absence detection and daylight harvesting utilised in a lighting design

Growth of Lighting Controls

• The market for lighting system control components is projected to grow very rapidly

Market trend for lighting system control components

NOTE: Numbers may not add up due to rounding

SOURCE: McKinsey's 2012 Global Lighting Market Model

Be energy efficient and energy intelligent

- Turn off when spaces not in use
- Turn off when adequate daylight
- Dim lights when daylight levels vary
- Dim lights when task lighting is used

Easy to overlook owner/occupier needs

- Efficient lighting system
- Easy to use
- Occupant needs to have control
- Occupant needs to understand

Shift towards digital lighting

- Improved performance & reliability
- Economically sustainable
- Trend of Integration
- Future Intelligent light sources

Need for Industry/Open standards

- Interoperability
- Reduce complexity
- Promote integration with different systems
- ZigBee Light Link
- EnOcean
- DALI

DALI market development

• **DALI = 64%** from all EL-ctrl in Europe (2012)

DALI Standard IEC62386

• Existing and planned outlook of the standard

DALI interoperability

Logo License Procedure (end 2013)

- 1. Signed DALI member agreement
- 2. Conformity with IEC62386 + DALI tester
- 3. Registration of device + test results

DALI device

Official DALI bench tester

Software updates (IEC 62386)

Controlling LED and its benefits

Natural fit in our modern digital world

- Utilise existing digital technologies
- Far easier to dim
- Inherent long life & controllability
- High Durability
- Reduced Maintenance

Controlling LED and its benefits

Adaptive Control Solutions

- Controllability
 - Greater Optical Control
 - Dimming range <1% 100%
 - Instant On/Off
- Tuneability
 - Colour Control
 - Human-centric lighting
- Longevity
 - Lifetime
 - Reliability
 - Serviceability

Controlling LED and its benefits

Innovation and need for standardisation

- Area of great innovation
- Emerging Standards
 - Optical
 - Form Factors (Zhaga)
 - Electrical Interfaces
- Beware low quality, low cost solutions

Part L & how lighting controls can help

Timescales and overview

- New regulations 6th April 2014
- Luminaire Efficacy to increase by 10%
- 60 Lumens per circuit watt
- Comprehensive lighting control factors

Part L & how lighting controls can help

Advantages for using Lighting Control

• With Lighting Controls may reduce to 42 Luminaire Lumens/circuit watt

Controls used	Control Factor	Efficacy target Llm/Wc
- No control	1.00	60
a. Daylit space with photo switching	0.90	54
b. Daylit space with photo switching and dimming	0.85	51
c. Unoccupied space with auto on/off occupancy	0.90	54
d. Unoccupied space with manual on / auto off	0.85	51
e. Space not daylit dimmed for constant illuminance	0.90	54
a + c	0.80	48
a + d	0.75	45
b + c	0.75	45
b + d	0.70	42
e+c	0.80	48
e + d	0.75	45

Part L & how lighting controls can help

LENI introduced as alternative calculation method

- Promotes efficient *use* lighting
- Considers lighting design as a whole
- Applicable control factors
 - Occupancy Factor (Fo)
 - Factor for Daylight (Fd)
 - Constant Luminance Factor (Fc)

Optimise energy performance via Integration

Integration required for high performance building

- Often rudimentary on/off switching only
 - Perceived lack of need (and budget)
 - Technical challenges
 - Division of design disciplines
- Industry/Open standards help facilitate integration
- BACnet
- DALI
- Standard Ethernet

Optimise energy performance via Integration

Common User Interface

- Easy of Use
- Flexibility
- Effective Maintenance Plans
- Remote Access

Optimise energy performance via Integration

Further energy reductions achievable

- Improve building efficiency via coordinated:
 - Scheduling
 - Occupancy Control
 - Light Level Optimisation
- Sharing of information
 - Actual building usage
 - Benchmarking

L is for Lighting Control

Conclusions

- The landscape of the lighting industry is changing, and we NEED to adapt
 - Lighting Controls, LED, Integration
- Industry/Open standards will drive the digitalisation of lighting and controls
 - DALI, ZigBee, EnOcean, BACnet
- Not enough to specify high efficacy luminaires alone
 - Couple with lighting controls
- New legislation clearly identifies the need for lighting controls
 - The "nice to have" lighting controls option will become the "must have"
- New technologies in whole-building control will help provide greater overall energy savings and improve control, efficiency & reliability

Helvar

Thank you

dan.wills@helvar.com